Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.

Identifieur interne : 000037 ( Main/Exploration ); précédent : 000036; suivant : 000038

Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.

Auteurs : Zs Fia Bánfalvi [Hongrie] ; Edina Csákvári [Hongrie] ; Vanda Villányi [Hongrie] ; Mihály Kondrák [Hongrie]

Source :

RBID : pubmed:32398038

Abstract

BACKGROUND

Gene editing using the CRISPR/Cas9 system has become a routinely applied method in several plant species. The most convenient gene delivery system is Agrobacterium-mediated gene transfer with antibiotic selection and stable genomic integration of transgenes, including Cas9. For elimination of transgenes in the segregating progeny, selfing is applied in many plant species. This approach, however, cannot be widely employed in potato because most of the commercial potato cultivars are self-incompatible.

RESULTS

In this study, the efficiency of a transient Cas9 expression system with positive/negative selection based on codA-nptII fusion was tested. The PHYTOENE DESATURASE (PDS) gene involved in carotenoid biosynthesis was targeted. A new vector designated PROGED::gPDS carrying only the right border of T-DNA was constructed. Using only the positive selection function of PROGED::gPDS and the restriction enzyme site loss method in PCR of genomic DNA after digestion with the appropriate restriction enzyme, it was demonstrated that the new vector is as efficient in gene editing as a traditional binary vector with right- and left-border sequences. Nevertheless, 2 weeks of positive selection followed by negative selection did not result in the isolation of PDS mutants. In contrast, we found that with 3-day positive selection, PDS mutants appear in the regenerating population with a minimum frequency of 2-10%. Interestingly, while large deletions (> 100 bp) were generated by continuous positive selection, the 3-day selection resulted in deletions and substitutions of only a few bp. Two albinos and three chimaeras with white and green leaf areas were found among the PDS mutants, while all the other PDS mutant plants were green. Based on DNA sequence analysis some of the green plants were also chimaeras. Upon vegetative propagation from stem segments in vitro, the phenotype of the plants obtained even by positive selection did not change, suggesting that the expression of Cas9 and gPDS is silenced or that the DNA repair system is highly active during the vegetative growth phase in potato.

CONCLUSIONS

Gene-edited plants can be obtained from potatoes by Agrobacterium-mediated transformation with 3-day antibiotic selection with a frequency high enough to identify the mutants in the regenerating plant population using PCR.


DOI: 10.1186/s12896-020-00621-2
PubMed: 32398038
PubMed Central: PMC7216596


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.</title>
<author>
<name sortKey="Banfalvi, Zs Fia" sort="Banfalvi, Zs Fia" uniqKey="Banfalvi Z" first="Zs Fia" last="Bánfalvi">Zs Fia Bánfalvi</name>
<affiliation wicri:level="1">
<nlm:affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary. banfalvi.zsofia@abc.naik.hu.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Csakvari, Edina" sort="Csakvari, Edina" uniqKey="Csakvari E" first="Edina" last="Csákvári">Edina Csákvári</name>
<affiliation wicri:level="1">
<nlm:affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Villanyi, Vanda" sort="Villanyi, Vanda" uniqKey="Villanyi V" first="Vanda" last="Villányi">Vanda Villányi</name>
<affiliation wicri:level="1">
<nlm:affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kondrak, Mihaly" sort="Kondrak, Mihaly" uniqKey="Kondrak M" first="Mihály" last="Kondrák">Mihály Kondrák</name>
<affiliation wicri:level="1">
<nlm:affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32398038</idno>
<idno type="pmid">32398038</idno>
<idno type="doi">10.1186/s12896-020-00621-2</idno>
<idno type="pmc">PMC7216596</idno>
<idno type="wicri:Area/Main/Corpus">000040</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000040</idno>
<idno type="wicri:Area/Main/Curation">000040</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000040</idno>
<idno type="wicri:Area/Main/Exploration">000040</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.</title>
<author>
<name sortKey="Banfalvi, Zs Fia" sort="Banfalvi, Zs Fia" uniqKey="Banfalvi Z" first="Zs Fia" last="Bánfalvi">Zs Fia Bánfalvi</name>
<affiliation wicri:level="1">
<nlm:affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary. banfalvi.zsofia@abc.naik.hu.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Csakvari, Edina" sort="Csakvari, Edina" uniqKey="Csakvari E" first="Edina" last="Csákvári">Edina Csákvári</name>
<affiliation wicri:level="1">
<nlm:affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Villanyi, Vanda" sort="Villanyi, Vanda" uniqKey="Villanyi V" first="Vanda" last="Villányi">Vanda Villányi</name>
<affiliation wicri:level="1">
<nlm:affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kondrak, Mihaly" sort="Kondrak, Mihaly" uniqKey="Kondrak M" first="Mihály" last="Kondrák">Mihály Kondrák</name>
<affiliation wicri:level="1">
<nlm:affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC biotechnology</title>
<idno type="eISSN">1472-6750</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Gene editing using the CRISPR/Cas9 system has become a routinely applied method in several plant species. The most convenient gene delivery system is Agrobacterium-mediated gene transfer with antibiotic selection and stable genomic integration of transgenes, including Cas9. For elimination of transgenes in the segregating progeny, selfing is applied in many plant species. This approach, however, cannot be widely employed in potato because most of the commercial potato cultivars are self-incompatible.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, the efficiency of a transient Cas9 expression system with positive/negative selection based on codA-nptII fusion was tested. The PHYTOENE DESATURASE (PDS) gene involved in carotenoid biosynthesis was targeted. A new vector designated PROGED::gPDS carrying only the right border of T-DNA was constructed. Using only the positive selection function of PROGED::gPDS and the restriction enzyme site loss method in PCR of genomic DNA after digestion with the appropriate restriction enzyme, it was demonstrated that the new vector is as efficient in gene editing as a traditional binary vector with right- and left-border sequences. Nevertheless, 2 weeks of positive selection followed by negative selection did not result in the isolation of PDS mutants. In contrast, we found that with 3-day positive selection, PDS mutants appear in the regenerating population with a minimum frequency of 2-10%. Interestingly, while large deletions (> 100 bp) were generated by continuous positive selection, the 3-day selection resulted in deletions and substitutions of only a few bp. Two albinos and three chimaeras with white and green leaf areas were found among the PDS mutants, while all the other PDS mutant plants were green. Based on DNA sequence analysis some of the green plants were also chimaeras. Upon vegetative propagation from stem segments in vitro, the phenotype of the plants obtained even by positive selection did not change, suggesting that the expression of Cas9 and gPDS is silenced or that the DNA repair system is highly active during the vegetative growth phase in potato.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Gene-edited plants can be obtained from potatoes by Agrobacterium-mediated transformation with 3-day antibiotic selection with a frequency high enough to identify the mutants in the regenerating plant population using PCR.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32398038</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-6750</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>BMC biotechnology</Title>
<ISOAbbreviation>BMC Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.</ArticleTitle>
<Pagination>
<MedlinePgn>25</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12896-020-00621-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Gene editing using the CRISPR/Cas9 system has become a routinely applied method in several plant species. The most convenient gene delivery system is Agrobacterium-mediated gene transfer with antibiotic selection and stable genomic integration of transgenes, including Cas9. For elimination of transgenes in the segregating progeny, selfing is applied in many plant species. This approach, however, cannot be widely employed in potato because most of the commercial potato cultivars are self-incompatible.</AbstractText>
<AbstractText Label="RESULTS">In this study, the efficiency of a transient Cas9 expression system with positive/negative selection based on codA-nptII fusion was tested. The PHYTOENE DESATURASE (PDS) gene involved in carotenoid biosynthesis was targeted. A new vector designated PROGED::gPDS carrying only the right border of T-DNA was constructed. Using only the positive selection function of PROGED::gPDS and the restriction enzyme site loss method in PCR of genomic DNA after digestion with the appropriate restriction enzyme, it was demonstrated that the new vector is as efficient in gene editing as a traditional binary vector with right- and left-border sequences. Nevertheless, 2 weeks of positive selection followed by negative selection did not result in the isolation of PDS mutants. In contrast, we found that with 3-day positive selection, PDS mutants appear in the regenerating population with a minimum frequency of 2-10%. Interestingly, while large deletions (> 100 bp) were generated by continuous positive selection, the 3-day selection resulted in deletions and substitutions of only a few bp. Two albinos and three chimaeras with white and green leaf areas were found among the PDS mutants, while all the other PDS mutant plants were green. Based on DNA sequence analysis some of the green plants were also chimaeras. Upon vegetative propagation from stem segments in vitro, the phenotype of the plants obtained even by positive selection did not change, suggesting that the expression of Cas9 and gPDS is silenced or that the DNA repair system is highly active during the vegetative growth phase in potato.</AbstractText>
<AbstractText Label="CONCLUSIONS">Gene-edited plants can be obtained from potatoes by Agrobacterium-mediated transformation with 3-day antibiotic selection with a frequency high enough to identify the mutants in the regenerating plant population using PCR.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bánfalvi</LastName>
<ForeName>Zsófia</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0003-4729-4432</Identifier>
<AffiliationInfo>
<Affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary. banfalvi.zsofia@abc.naik.hu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Csákvári</LastName>
<ForeName>Edina</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Villányi</LastName>
<ForeName>Vanda</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kondrák</LastName>
<ForeName>Mihály</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>NARIC Agricultural Biotechnology Institute, H-2100 Szent-Györgyi A. u. 4., Gödöllő, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K-120641</GrantID>
<Agency>NKFI</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Biotechnol</MedlineTA>
<NlmUniqueID>101088663</NlmUniqueID>
<ISSNLinking>1472-6750</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Agrobacterium</Keyword>
<Keyword MajorTopicYN="Y">CRISPR/Cas9</Keyword>
<Keyword MajorTopicYN="Y">Chimaera</Keyword>
<Keyword MajorTopicYN="Y">Gene editing</Keyword>
<Keyword MajorTopicYN="Y">Potato</Keyword>
<Keyword MajorTopicYN="Y">Transformation</Keyword>
<Keyword MajorTopicYN="Y">Transgene-free</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32398038</ArticleId>
<ArticleId IdType="doi">10.1186/s12896-020-00621-2</ArticleId>
<ArticleId IdType="pii">10.1186/s12896-020-00621-2</ArticleId>
<ArticleId IdType="pmc">PMC7216596</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Rep. 2017 Mar;36(3):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27995308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 21;6:24765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27097775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Sep 13;8(1):13753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30214055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3 Biotech. 2019 Jul;9(7):254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31192079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Oct 01;19(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30275376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2006 Dec;15(6):729-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17072563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 17;6:31481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27530958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1985 Jul 11;13(13):4777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4022773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Feb 06;10:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30787936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 May;180(1):78-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30792232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2018 Jan;18(1):89-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29188477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1983 Nov;35(1):225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6313224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2018 Mar 02;5:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29531752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 30;7:377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27066031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2010 Jul 16;10:53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 14;10(12):e0144591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26657719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jul 21;7:1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27493650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2015 Sep;34(9):1473-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26082432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Dec 01;19(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30513774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014;42(17):10903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25200087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Feb 1;68(5):1265-1281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Oct;131:37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29523384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2018;418:463-488</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30043343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jan;227(2):299-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17828416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Jan;36(1):117-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27699473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jan 18;20(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30669298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2018 Feb;49:35-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28800419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Aug;16(8):1424-1433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29331077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Mar 31;471(7340):602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21455174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2014 Nov;127(11):2279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25186170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 May;40(2):223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10412902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2018 Dec;164(4):378-384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29572864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1988 May;11(3):255-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 18;8:1780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2019 May 2;15:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31068975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Aug;31(8):686-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23929338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 May 18;12(5):e0177966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28542349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Mar 06;20(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30845784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dokl Biochem Biophys. 2019 May;484(1):88-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31012023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Apr 02;10:376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31001300</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hongrie</li>
</country>
</list>
<tree>
<country name="Hongrie">
<noRegion>
<name sortKey="Banfalvi, Zs Fia" sort="Banfalvi, Zs Fia" uniqKey="Banfalvi Z" first="Zs Fia" last="Bánfalvi">Zs Fia Bánfalvi</name>
</noRegion>
<name sortKey="Csakvari, Edina" sort="Csakvari, Edina" uniqKey="Csakvari E" first="Edina" last="Csákvári">Edina Csákvári</name>
<name sortKey="Kondrak, Mihaly" sort="Kondrak, Mihaly" uniqKey="Kondrak M" first="Mihály" last="Kondrák">Mihály Kondrák</name>
<name sortKey="Villanyi, Vanda" sort="Villanyi, Vanda" uniqKey="Villanyi V" first="Vanda" last="Villányi">Vanda Villányi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000037 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000037 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32398038
   |texte=   Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32398038" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024